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A study of �ow arising from insect wing �apping motion
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SUMMARY

We have modelled the aerodynamics of the �apping insect wing to provide insight into the aerodynamics
of �apping wing micro air vehicles. The complexities of the physics of the �ow have been highlighted
and methodologies which could be used to explore it have been de�ned. Initial solutions have been
obtained which qualitatively agree with experiments. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The main objective of this work is to provide more insight into the little-known and complex
[1, 2] bioaerodynamics of insect �ight, with a view of using the insight for the design of
�apping wing micro air vehicles [3].
A methodology for modelling of the aerodynamics of the �apping insect wing is proposed in

this paper. Numerical simulations will be applied to study the novel design concepts of �apping
wing micro air vehicles (MAVs) [3]. The development of small (ca. six inches, or hand-held)
autonomous �ying vehicles is motivated by a need for intelligent reconnaissance robots, capa-
ble of discreetly penetrating con�ned spaces and manoeuvring in them without the assistance of
a human telepilot [4]. The reported work is part of a larger multidisciplinary project involving
materials, sensors, actuators, navigation, guidance and control, and biological experiments [5].
A previous numerical study of note on insect �ight is the paper by Liu and Kawachi [2]

which focused on numerical reproduction of the �ow generated by a tethered hawkmoth
Manduca sexta [6]. In this paper we consider the wing of a Bibio �y [7, p. 46], whose
semi-span has been scaled up to 126 millimetres. The assumed kinematics is similar to that
observed for the hawkmoth. Numerically, we use the arti�cial compressibility assumption, as
in Reference [2], but apply a solver and meshing which are di�erent from those used by
Liu and Kawachi. In particular, the hybrid meshes employed are well suited for capturing
viscous e�ects and allow handling of complicated wing shapes. This approach is better suited
to the design of �apping wings for MAVs, where frequent changes of the wing geometric
and kinematic parameters may be required and, in the future, inclusion of the vehicle’s body.
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2. KINEMATICS OF INSECT-LIKE FLAPPING

Insects �y by oscillating (frequency range: 5–200 Hz) and rotating their wings through large
angles, while sweeping them forwards and backwards. This mode of �ying relies on unsteady
aerodynamics, producing high lift coe�cients (peak CL of 3 is typical) and excellent manoeu-
vrability. The unsteady mechanism varies with di�erent insects: the most important mechanism
is a bound, leading-edge vortex [6].
Recall that the basic formula for the wing aerodynamic lift force is L=0:5�SV 2CL, where

� is the air density, S is the wing area and V the relative (accounting for wind e�ects)
velocity of the wing with respect to air. The value of the (dimensionless) lift coe�cient
CL depends mainly on the wing design and angle of attack and seldom exceeds 1.2 for
conventional aeronautical applications. For unsteady aerodynamics, the lift force will be time-
varying L=L(t) and this is re�ected by time-variance of the lift coe�cient CL=CL(t). Hence,
its peak values of 3 during the insect wingbeat cycle are remarkable when compared with
conventional �ying machines. The main consequence for insect �ight is generation of high
lift at low speeds thus enabling slow, but highly manoeuvrable and power e�cient �ight (for
insects speeds of a few mph are typical).
The wingbeat cycle can be divided into two phases: downstroke and upstroke (see Figures 1

and 2). At the beginning of downstroke, the wing (as seen from the front of the insect) is
in the uppermost and rearmost position with the leading edge pointing forward. The wing is
then pushed downwards and forwards and rotated continuously, so that the angle of attack
changes considerably during this downward motion. At the end of the downstroke, the wing
is twisted rapidly, so that the leading edge points backwards, and the upstroke begins. During
the upstroke the wing is pushed upwards and backwards and rotated again, which changes
the angle of attack throughout this motion. At the highest point, the wing is twisted again, so
that the leading edge points forward and the next downstroke begins.
Insect wing �apping occurs in a stroke plane that generally remains at the same orientation

to the body and is either horizontal or inclined, see Figure 2. In forward �ight the downstroke
lasts longer than the upstroke, because of the need to generate thrust. In hover they are equal,
resulting in the wing tip tracing a �at �gure of eight (as seen from the insect’s side).
Insect wing �apping is a special combination of three motions: (i) oscillation, or the up

and down motion (the angle � in Figure 3), (ii) rotation, or pitching and plunging (the angle
� in Figure 3), and (iii) sweep, or forwards and backwards motion (the angle � in Figure 3).
Note that in Figure 3 the sense of the angles is indicated by the arrow of the corresponding
arc. Thus, � is positive when the wing moves upwards (from the y-axis towards the z-axis),
� is positive when the wing pitches (the leading edge is above the insect) and � is positive
when the wing moves backwards (from the y-axis towards the x-axis).
The kinematic data used in this paper have been kindly provided by Ellington (based on

References [8–10]) and are very similar to those used in Reference [2]. Each component
motion, i.e. in �; � and �, is periodic and therefore can be represented by Fourier series.
Based on an experimental sensitivity study Ellington has found that it su�ces to truncate the
series at the third harmonic:

xi(t)=
1
2
ai0 +

3∑
k=1
(aik cos k!0t + b

i
k sin k!0t); i=1; 2; 3 (1)

where x := [� � �]T.
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Figure 1. Insect wing �apping is a periodic motion and each cycle is composed of the downstroke and
upstroke. At the end of each half-cycle the wing reverses its direction.

Figure 2. Typical motions of insect wing in hover. Insect body is orien-
tated horizontally, while the wing tip traces a �at �gure of eight around the

stroke plane. The stroke plane is inclined by the angle �.

The oscillation causes the wing to move above and below the stroke plane and its amplitude
is not usually high; in our case �∈ [−11:35◦; 6:15◦]. The changes in wing incidence are
more visible: �∈ [51:83◦; 138:40◦]. Wing sweep is also pronounced with �∈ [−46:50◦; 64:26◦],
where the negative values mean that the wing is the forward part of the �gure of eight. Finally,
the stroke plane is inclined at �=15◦. Since � varies around �c := (�max + �min)=2=95:12◦

by A := �max − �c=43:29◦, the e�ective incidence can be modelled as an oscillation around
�+ �c with amplitude A. A similar approach is applicable to � and �.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:497–505



500 J. SZMELTER AND R. ŻBIKOWSKI

Figure 3. The co-ordinate system, adopted by Willmott and Ellington [8–10] for their study of �ight in
the hawkmoth Manduca sexta, and used in this paper. The origin of the right-hand xyz system is at
the wing base (where the wing is attached to the body). The xy-plane coincides with the stroke plane
and the z-axis is orthogonal to this plane. The stroke plane is inclined with respect to the XY -plane of
the external XYZ reference frame; in this frame the insect body is orientated horizontally. In hover the
wing moves above and below the stroke plane, and forwards and backwards along the plane. Coupled
with the wing rotation, this makes the wing tip trace a �at �gure of eight with the stroke plane providing

the symmetry axis; see also Figure 2.
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3. CFD METHODOLOGY

3.1. Flow solution and dynamic remeshing

Speed characteristics of this problem are low or zero, therefore the �ow is treated as an
incompressible �uid. At low Reynolds numbers (up to 9× 103), which are typical for insect
�ight, the �ow can be assumed to be dominantly laminar. Such �ow can be described by the
following di�erential form of the Navier–Stokes equations written in the Eulerian co-ordinate
system:

@w
@t∗

+�
(
@f
@x
+
@g
@y
+
@h
@z

)
=0 (2)

where the vector of dependent variables w and the �ux vectors f ; g; h are given by:

w=[p u v w]T

f=[u u2 + p− �xx uv− �xy uw − �xz]T

g=[v vu− �yx v2 + p− �yy vw − �yz]T

h=[w wu− �zx wv− �zy w2 + p− �zz]T

(3)

and matrix � can be written as

�=



c∗2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (4)

where p indicates pressure, u; v; w are the Cartesian velocity components in x; y; z directions
and �ij are the components of the shear stress tensor. This system of equations is closed by
the ideal gas state equation.
It can be noticed that the continuity equation, representing the incompressibility condition,

is modi�ed by adding the arti�cial compressibility term:

@p
@t∗

1
c∗2

(5)

where c∗ corresponds to a �nite arti�cial speed of sound and t∗ indicates pseudo time. (For
incompressible �ows the speed of sound is in�nite.) In this way, the mathematical character
of Equations (2) is changed to a system of hyperbolic equations for which an explicit �ow
solver can be employed. As in Reference [11], c∗ is chosen to achieve a compromise between
maximum and minimum wave speeds and to maintain both accuracy and stability. Thus,
(c∗)2 =C(u2 + v2 + w2), where the constant C is of the order of unity.
The numerical solution is based on the three dimensional. Runge–Kutta, explicit, code. To

avoid numerical stability limitations imposed for the explicit solvers on the time step by the
CFL conditions for incompressible �ows, the above arti�cial compressibility approach has
been employed. The method, originally proposed by Chorin [12], has already been used in
the context of �apping wing modelling by Liu and Kawachi [2]. In the work presented here,
the developments reported in Reference [11] have been closely followed.
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Figure 4. The e�ect of sweep angle on the surface mesh: (a) at 0:5T for �=−45:77◦; �=2:21◦ and
�=92:69◦; (b) at 0:25T for �=3:47◦; �=−4:73◦ and �=63:92◦.

In steady state, time derivatives reduce to zero, and solutions of the systems of modi�ed
equations and the original incompressible �ow Navier–Stokes equations become equivalent.
The arti�cial compressibility method has been further extended (as shown for example in
Reference [2]) to treat time-dependent �ows. This extended, dual time-stepping method relies
on introduction of time intervals. Within each interval, additional iterations in pseudo time
are performed and the assumption is made that the �ow recovers physical time derivative in
the limit.
The spatial discretization is based on the three-dimensional Runge–Kutta, �nite-volume

code. This dual-mesh, edge-based, �nite-volume code is valid for general hybrid meshes,
although in this application only hexahedral cells are used. Arti�cial dissipation of Jameson
is used [13].
Dynamic remeshing produces errors due to the moving mesh. In order to ensure that the

mesh changes do not a�ect the �ow �eld, the geometric conservation equations are additionally
solved during time integration [14]. These are: (i) volume conservation law, obtained by
applying the continuity equation to a �ow�eld with zero velocity and constant density, (ii)
surface conservation law, obtained by applying the continuity equation to a constant-density
�ow in arbitrary direction on a �xed grid. For this solution the same integration scheme is
used as for the conservation law of the �uid.
In the presented calculation the structured single block C-H 192× 64× 32 mesh is used

and is generated by the fast conformal mapping technique. The movement of the wing is
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prescribed as explained in the previous section. At present the mesh is regenerated at every
time step. Sample surface mesh plots at the most characteristic data points (corresponding to
0:25T; 0:5T times in the �apping cycle) are shown in Figure 4.

3.2. Numerical results

Sample calculations illustrating current capabilities of the method and providing a preliminary
insight into the aerodynamic behaviour of �apping wing have been performed. At this stage
the choice of the wing planform and shape of aerofoils forming the wing are still open
questions. In the presented calculations the choice of the planform has been inspired by the
geometry of the wing of a Bibio �y. The wing semi-span is 126 mm, the Mach number is
zero and the Reynolds number 5× 103.
A constant aerofoil section was used along the wing span and scaled with respect to local

chord to �t the planform. A symmetric NACA0012 aerofoil with thickness decreased 0.1
times was chosen.
The values of CL obtained were within the range −1:0 and 2.8 and a typical time history

after the �ow has been established is shown for two cycles in Figure 6. A leading edge recir-
culation was detected, qualitatively consistent with experimental �ndings [6], but is di�cult

Figure 5. 3-D vectors indicating the presence of a leading-edge vortex.
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Figure 6. The lift coe�cient for two cycles, after convergence to established cyclical �ow.

to visualize, as seen in Figure 5. However, a clear presence of recirculation was seen from
examining directions and values of velocity components at relevant grid positions. We intend
to improve data analysis routines for this purpose.
The compressible �ow option of the code and wing movement were validated for a very

long wing built on an oscillating NACA0012 aerofoil. The validation of the incompressible
�ow option was conducted for a �ow around a cylinder.

4. CONCLUSIONS

This paper reports the current status of a project investigating aerodynamic aspects of �apping
MAVs. The complexities of the physics of the �ow have been highlighted and methodologies
which could be used to explore it have been de�ned. Initial solutions have been obtained
which qualitatively agree with experiments. The next step will be to perform quantitative
validation with forthcoming new data from both biological and engineering experiments.
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